Think Like a Data Scientist

Think Like a Data Scientist
- ISBN 13:
9781633430273
- ISBN 10:
1633430278
- Format: Paperback
- Copyright: 04/02/2017
- Publisher: SIMON & SCHUSTER (A)
List Price $53.99 Save
TERM | PRICE | DUE |
---|---|---|
Free Shipping Both Ways
Highlight/Take Notes Like You Own It
Purchase/Extend Before Due Date
List Price $53.99 Save $12.95
In Stock Usually Ships in 24 Hours.
We Buy This Book Back!
Free Shipping On Every Order
List Price $53.99 Save $0.54
Usually Ships in 3-5 Business Days
We Buy This Book Back!
Free Shipping On Every Order
Note: Supplemental materials are not guaranteed with Rental or Used book purchases.
Extend or Purchase Your Rental at Any Time
Need to keep your rental past your due date? At any time before your due date you can extend or purchase your rental through your account.
Summary
Think Like a Data Scientist presents a step-by-step approach to data science, combining analytic, programming, and business perspectives into easy-to-digest techniques and thought processes for solving real world data-centric problems.
Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
About the Technology
Data collected from customers, scientific measurements, IoT sensors, and so on is valuable only if you understand it. Data scientists revel in the interesting and rewarding challenge of observing, exploring, analyzing, and interpreting this data. Getting started with data science means more than mastering analytic tools and techniques, however; the real magic happens when you begin to think like a data scientist. This book will get you there.
About the Book
Think Like a Data Scientist teaches you a step-by-step approach to solving real-world data-centric problems. By breaking down carefully crafted examples, you'll learn to combine analytic, programming, and business perspectives into a repeatable process for extracting real knowledge from data. As you read, you'll discover (or remember) valuable statistical techniques and explore powerful data science software. More importantly, you'll put this knowledge together using a structured process for data science. When you've finished, you'll have a strong foundation for a lifetime of data science learning and practice.
What's Inside
- The data science process, step-by-step
- How to anticipate problems
- Dealing with uncertainty
- Best practices in software and scientific thinking
About the Reader
Readers need beginner programming skills and knowledge of basic statistics.
About the Author
Brian Godsey has worked in software, academia, finance, and defense and has launched several data-centric start-ups.
Table of Contents
- Philosophies of data science
- Setting goals by asking good questions
- Data all around us: the virtual wilderness
- Data wrangling: from capture to domestication
- Data assessment: poking and prodding
- Developing a plan
- Statistics and modeling: concepts and foundations
- Software: statistics in action
- Supplementary software: bigger, faster, more efficient
- Plan execution: putting it all together
- Delivering a product
- After product delivery: problems and revisions
- Wrapping up: putting the project away