FREE SHIPPING BOTH WAYS

ON EVERY ORDER!

LIST PRICE:

$97.95

Sorry, this item is currently unavailable.

ISBN: 9780195078343 | 0195078349

Format: HardcoverPublisher: Oxford University Press, USA

Pub. Date: 9/23/1993

Because Knetbooks knows college students. Our rental program is designed to save you time and money. Whether you need a textbook for a semester, quarter or even a summer session, we have an option for you. Simply select a rental period, enter your information and your book will be on its way!

- We have the lowest prices on thousands of popular textbooks
- Free shipping both ways on ALL orders
- Most orders ship within 48 hours
- Need your book longer than expected? Extending your rental is simple
- Our customer support team is always here to help

One of the major challenges of modern space mission design is the orbital mechanics -- determining how to get a spacecraft to its destination using a limited amount of propellant. Recent missions such as Voyager and Galileo required gravity assist maneuvers at several planets to accomplishtheir objectives. Today's students of aerospace engineering face the challenge of calculating these types of complex spacecraft trajectories. This classroom-tested textbook takes its title from an elective course which has been taught to senior undergraduates and first-year graduate students forthe past 22 years. The subject of orbital mechanics is developed starting from the first principles, using Newton's laws of motion and the law of gravitation to prove Kepler's empirical laws of planetary motion. Unlike many texts the authors also use first principles to derive other importantresults including Kepler's equation, Lambert's time-of-flight equation, the rocket equation, the Hill-Clohessy-Wiltshire equations of relative motion, Gauss' equations for the variation of the elements, and the Gauss and Laplace methods of orbit determination. The subject of orbit transfer receivesspecial attention. Optimal orbit transfers such as the Hohmann transfer, minimum-fuel transfers using more than two impulses, and non-coplanar orbital transfer are discussed. Patched-conic interplanetary trajectories including gravity-assist maneuvers are the subject of an entire chapter and areparticularly relevant to modern space missions.