did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

Mathematical Aspects of Subsonic and Transonic Gas Dynamics

9780486810164

Mathematical Aspects of Subsonic and Transonic Gas Dynamics

  • ISBN 13:

    9780486810164

  • ISBN 10:

    048681016X

  • Format: Paperback
  • Copyright: 10/20/2016
  • Publisher: Dover Publications

List Price $17.01 Save

Rent $10.61
TERM PRICE DUE
Added Benefits of Renting

Free Shipping Both Ways Free Shipping Both Ways
Highlight/Take Notes Like You Own It Highlight/Take Notes Like You Own It
Purchase/Extend Before Due Date Purchase/Extend Before Due Date

List Price $17.01 Save $0.17

New $16.84

Usually Ships in 3-5 Business Days

We Buy This Book Back We Buy This Book Back!

Included with your book

Free Shipping On Every Order Free Shipping On Every Order

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Extend or Purchase Your Rental at Any Time

Need to keep your rental past your due date? At any time before your due date you can extend or purchase your rental through your account.

Summary

This concise volume by a prominent mathematician offers an important survey of mathematical aspects of the theory of compressible fluids. The treatment is geared toward advanced undergraduates and graduate students in physics, applied mathematics, and engineering. Focusing on two-dimensional steady potential flows, the text eschews detailed proofs in favor of clear indications of the main ideas and descriptions of new mathematical concepts and methods that arose in connection with these chapters in fluid dynamics.
Starting with a general discussion of the differential equations of a compressible gas flow, the book advances to the mathematical background of subsonic flow theory. Subsequent chapters explore the behavior of a flow at infinity and methods for the determination of flows around profiles, flows in channels and with a free boundary, the mathematical background of transonic gas dynamics, and some problems in transonic flow. An extensive bibliography of 400 papers concludes the text.

Author Biography

Read more