did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

Computational Methods for Electromagnetic Phenomena

9781107021051

Computational Methods for Electromagnetic Phenomena

  • ISBN 13:

    9781107021051

  • ISBN 10:

    1107021057

  • Format: Hardcover
  • Copyright: 02/25/2013
  • Publisher: Cambridge Univ Pr

List Price $155.00 Save

Rent $107.42
TERM PRICE DUE
Added Benefits of Renting

Free Shipping Both Ways Free Shipping Both Ways
Highlight/Take Notes Like You Own It Highlight/Take Notes Like You Own It
Purchase/Extend Before Due Date Purchase/Extend Before Due Date

List Price $155.00 Save $1.54

New $153.46

Special Order: 1-2 Weeks

We Buy This Book Back We Buy This Book Back!

Included with your book

Free Shipping On Every Order Free Shipping On Every Order

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Extend or Purchase Your Rental at Any Time

Need to keep your rental past your due date? At any time before your due date you can extend or purchase your rental through your account.

Summary

A unique and comprehensive graduate text and reference on numerical methods for electromagnetic phenomena, from atomistic to continuum scales, in biology, micro-to-optical waves, photonics, nanoelectronics and plasmas. The state-of-the-art numerical methods described include: • Statistical fluctuation formula for the dielectric constant • Particle-Mesh-Ewald, Fast-Multipole-Method and image-based reaction field method for long-range interactions • High order singular/hypersingular (Nyström collocation/Galerkin) boundary and volume integral methods in layered media for Poisson–Boltzmann electrostatics, electromagnetic wave scattering and electron density waves in quantum dots • Absorbing and UPML boundary conditions • High order hierarchical Nédélec edge elements • High order discontinuous Galerkin (DG) and Yee finite difference time-domain methods • Finite element and plane wave frequency-domain methods for periodic structures • Generalized DG beam propagation method for optical waveguides • NEGF(Non-equilibrium Green's function) and Wigner kinetic methods for quantum transport • High order WENO and Godunov and central schemes for hydrodynamics transport • Vlasov-Fokker-Planck and PIC and constrained MHD transport in plasmas

Table of Contents

Read more